## tirgul 16.07.2007

מנהל: gedalin

gedalin
הודעות: 1535
הצטרף: 18:16 12/04/2007

### tirgul 16.07.2007

I posted a part of the today's tutorial

אוהד
הודעות: 27
הצטרף: 12:31 25/04/2007

### Last question on the tirgul

In the last question yesterday, where a thin ring has a decaying current and we are to compute the field, we where showed to solve the integral for since the one for
$$\hat{y}$$
is odd and equals zero.
How is the integral done?
I got something similar to:

$$\vec{A} = \frac{I_0 R}{rc} \int_{0}^{2\pi} e^{-\frac { \left(t-\frac{r}{c} +\frac{ sin\theta}{c}\cos \left(\phi - \phi '\right) \right)^2 }{2\tau ^2} } \cos{\phi '}d\phi ' \hat{y}$$

gedalin
הודעות: 1535
הצטרף: 18:16 12/04/2007

### Re: Last question on the tirgul

Bessel functions

אוהד כתב:In the last question yesterday, where a thin ring has a decaying current and we are to compute the field, we where showed to solve the integral for since the one for
$$\hat{y}$$
is odd and equals zero.
How is the integral done?
I got something similar to:

$$\vec{A} = \frac{I_0 R}{rc} \int_{0}^{2\pi} e^{-\frac { \left(t-\frac{r}{c} +\frac{ sin\theta}{c}\cos \left(\phi - \phi '\right) \right)^2 }{2\tau ^2} } \cos{\phi '}d\phi ' \hat{y}$$