tirgul 16.07.2007

מנהל: gedalin

שלח תגובה
gedalin
הודעות: 1534
הצטרף: 18:16 12/04/2007

tirgul 16.07.2007

שליחה על ידי gedalin » 21:54 16/07/2007

I posted a part of the today's tutorial

אוהד
הודעות: 27
הצטרף: 12:31 25/04/2007

Last question on the tirgul

שליחה על ידי אוהד » 15:34 17/07/2007

In the last question yesterday, where a thin ring has a decaying current and we are to compute the field, we where showed to solve the integral for since the one for
\( \hat{y} \)
is odd and equals zero.
How is the integral done?
I got something similar to:

\( \vec{A} = \frac{I_0 R}{rc} \int_{0}^{2\pi} e^{-\frac { \left(t-\frac{r}{c} +\frac{ sin\theta}{c}\cos \left(\phi - \phi '\right) \right)^2 }{2\tau ^2} } \cos{\phi '}d\phi ' \hat{y} \)

gedalin
הודעות: 1534
הצטרף: 18:16 12/04/2007

Re: Last question on the tirgul

שליחה על ידי gedalin » 16:35 17/07/2007

Bessel functions
 
אוהד כתב:In the last question yesterday, where a thin ring has a decaying current and we are to compute the field, we where showed to solve the integral for since the one for
\( \hat{y} \)
is odd and equals zero.
How is the integral done?
I got something similar to:

\( \vec{A} = \frac{I_0 R}{rc} \int_{0}^{2\pi} e^{-\frac { \left(t-\frac{r}{c} +\frac{ sin\theta}{c}\cos \left(\phi - \phi '\right) \right)^2 }{2\tau ^2} } \cos{\phi '}d\phi ' \hat{y} \)

שלח תגובה

חזור אל “- אלקטרודינמיקה 1”